

CMOS 14-Stage Ripple-Carry Binary Counter/Divider and Oscillator

High-Voltage Types (20-Volt Rating)

CD4060B consists of an oscillator section and 14 ripple-carry binary counter stages. The oscillator configuration allows design of either RC or crystal oscillator circuits. A RESET input is provided which resets the counter to the all-O's state and disables the oscillator. A high level on the **RESET** line accomplishes the reset function. All counter stages are master-slave flip-flops. The state of the counter is advanced one step in binary order on the negative transition of ϕ_I (and ϕ_0). All inputs and outputs are fully buffered. Schmitt trigger action on the input-pulse line permits unlimited input-pulse rise and fall times.

The CD4060B-series types are supplied in 16-lead hermetic dual-in-line ceramic packages (F3A suffix), 16-lead dual-in-line plastic packages (E suffix), 16-lead small-outline packages (M, M96, MT, and NSR suffixes), and 16-lead thin shrink small-outline packages (PW and PWR suffixes).

Features:

- 12 MHz clock rate at 15 V
- Common reset
- Fully static operation
- Buffered inputs and outputs
- Schmitt trigger input-pulse line
- 100% tested for guiescent current at 20 V
- Standardized, symmetrical output characteristics
- 5-V, 10-V, and 15-V parametric ratings
- Meets all requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications for description of "B" Series CMOS Devices"

Oscillator Features:

- All active components on chip
- RC or crystal oscillator configuration
- RC oscillator frequency of 690 kHz min. at 15 V

Applications

- Control counters
 - Timers
- Frequency dividers
- Time-delay circuits

Fig. 2 - Detail of typical flip-flop stage.

MAXIMUM RATINGS, Absolute-Maximum Values:	
DC SUPPLY-VOLTAGE RANGE, (VDD)	
Voltages referenced to VSS Terminal)	-0.5V to +20V
INPUT VOLTAGE RANGE, ALL INPUTS	
DC INPUT CURRENT, ANY ONE INPUT	±10mA
POWER DISSIPATION PER PACKAGE (PD):	
For $T_A = -55^{\circ}G$ to $+100^{\circ}G$	
For $T_A = +100^{\circ}C$ to $+125^{\circ}C$	Derate Linearity at 12mW/°C to 200mW
DEVICE DISSIPATION PER OUTPUT TRANSISTOR	
FOR TA = FULL PACKAGE-TEMPERATURE RANGE (All Package	Types) 100mW
OPERATING-TEMPERATURE RANGE (TA)	
STORAGE TEMPERATURE RANGE (Tsto)	
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 \pm 1/32 inch (1.59 \pm 0.79mm) from case for 10s ma	ax +265 ⁰ C

Copyright © 2003, Texas Instruments Incorporated

CD4060B Types

STATIC ELECTRICAL CHARACTERISTICS

CHARAC- TERISTIC	HARAC- CONDITIONS LIMITS AT INDICAT						ED TEM	U N I T			
	Vo	VIN	VDD						+25		S
	(v)	- (V)	(v)	-55	-40	+85	+125	Min.	Тур.	Max.	
Quiescent		0,5	5	5	5	150	150	<u> </u>	0.04	5	
Device		0,10	10	10	10	300	300	[]	0.04	10	μA
Current,		0,15	15	20	20	600	600	(200) (200	0.04	20	
'DD		0,20	20	100	100	3000	3000		0.08	100	
Outout Low	0.4	0,5	5	0.64	0.61	0.42	0.36	0.51	1	-	
(Sink)Ourrent*,	0.5	0,10	10	1.6	1.5	1.1	0.9	1.3	. 2.6	-	
IOL Min.	1.5	0,15	15	4.2	4	2.8	2.4	3.4	6.8		
Output High	4.6	0,5	5	-0.64	-0.61	-0.42	-0.36	-0.51	-1	-	mA
(Source)	2.5	0,5	5	-2	-1.8	-1.3	-1.15	-1.6	-3.2		
Current*,	9.5	0,10	10	-1.6	-1.5	-1.1	-0.9	-1:3	-2.6		l., ••
'OH ''''''	13.5	0,15	15	-4.2	-4	-2.8	-2.4	-3.4	-6.8		
Output Voltage:	-	0,5	5	<u> </u>	0	.05		·	0	0.05	
Low-Level,		0,10	10		0	.05		-	0	0.05	
VOL Max.	·	0,15	15		0.05				0	0.05	v
Output		0,5	5		4	.95		4.95	. 5		
Voltage: High-Level		0,10	10	9.95				9.95	10	['	
V _{OH} Min.	-	0,15	15		14.	.95		14.95	15	- '	
Input Low	0.5,4.5	-	5		· · · · · · · · · · · · · · · · · · ·	1.5				1.5	
Voltage	1,9	<u> </u>	10			3			_	3	
VIL Max.	1.5,13.5	['	15			4	:	-	· -	4	l v
Input High	0.5,4.5		5	· .	3	3.5		3.5		-	
Voltage,	1,9	<u> </u>	10		7			7	_	-	1
VIH Min.	1.5,13.5		15			11		11	-	-	1
Input Current I _{IN} Max.	-	0,18	18	±0.1	±0.1	±1	.±1.,	_	±10-5	±0.1	μΑ

3

COMMERCIAL CMOS HIGH VOLTAGE ICs

Fig. 6 - Minimum p-channel output high (source) current characteristics.

Data not	applicable	to	terminal	9	or	10.

RECOMMENDED OPERATING CONDITIONS

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges

			UNITS	
and a second		MIN.	MAX.	
Supply-Voltage Range (For T _A = Full Package Temperature Range)		3	18	v
Input-Pulse Width, t _W (f = 100 kHz)	5 10 15	100 40 30	- - -	ns
Input-Pulse Rise Time and Fall Time, $t_{ m r}\phi, t_{ m f}\phi$	5 10 15	Unlimited		
Input-Pulse Frequency, $f_{\phi \underline{r}}$ (External pulse source)	5 10 15		3.5 8 12	MHz
Reset Pulse Width, t _W	5 10 15	120 60 40	- -	ns

CD4060B Types

		·L *	CL = 50 pF, RL = 200 ks2				
CHARACTERISTIC	TEST		LIMITS				
CHARACTERISTIC	CONDITIONS		MIN.	ТҮР.	MAX.	UNITS	
Input-Pulse Operation						1.	
Propagation Delay		5	-	370	740		
Time, $\phi \mathbf{\underline{r}}$ to Q4 Out;	. ,	10	·	150	300		
tPHL, tPLH		15	-	100	200		
Propagation Delay		5	-	100	200		
Time, Q _n to Q _{n+1} ;		10		50	100		
tPHL, tPLH	· · · · ·	15	-	40	80		
Transition Time,		5	-	100	200		
tTHL, tTLH		10	-	50	100	ns	
		15	-	40	80		
Min. Input-Pulse	·	5	-	50	100		
Width, t _W		10	·	20	40		
		15	-	15	30		
Input-Pulse Rise & Fall		5					
Time, t _{rø} , t _{fø}		10] ı	Unlimited			
		15		_			
Max. Input-Pulse		5	3.5	7	-		
Frequency, f		10	8	16	-	MHz	
source)		15	12	24	-		
Input Capacitance, C1	Any Inp	out	-	5	7.5	pF	
Reset Operation							
Propagation Delay		5	_	180	360		
Time, tPHL		10	-	80	160		
	· · · · ·	15	-	50	100	ns	
Minimum Reset		5	-	60	120	-	
Pulse Width, tw		10	-	30	60		

15

DYNAMIC ELECTRICAL CHARACTERISTICS at TA = 25°C, Input tr, tf = 20 ns,

20

40

Fig. 13 - Typical crystal circuit.

DYNAMIC ELECTRICAL CHARACTERISTICS at T_A = 25°C, Input t_r, t_f = 20 ns, C_L = 50 pF, R_L = 200 k\Omega [cont'd]

1.4

CHARACTERISTIC	TEST CONDITIONS	V _{DD} (V)	Min.	Тур.	Max.		
RC Operation				-			
Variation of Fra-	C _X = 200 pF,	5	—	23±10%	-		
quency (Unit-to-Unit)	R _S = 560 kΩ,	10	-	24±10%	_		
quency (ont-to-onit)	$R_X = 50 k\Omega$	15	ء <u>نہ</u> ہ	25±10%	-		
Variation of Fre- quency with voltage change (Same Unit)	C _X = 200 pF, R _S = 560 kΩ, R _X = 50 kΩ	5V to 10 V 10V to 15V	. <u>–</u>	1.5 0.5		KHZ	
R _X max.	C _X = 10 μF	5	· _		20		
	= 50 μF	10	_	-	20	MΩ	
	= 10 µF	15		-	- 10		
C _X max.	R _X = 500 kΩ	5	_		1000		
	= 300 kΩ	10		<u> </u>	50	μF	
	= 300 kΩ	15	-		50		
Maximum Oscillator	$R_{\chi} = 5 k\Omega$ $R_{S} = 30 k\Omega$	10	530	650	810	LU7	
Frequency*	C _X = 15 pF	15	690	800	940	KIIZ	
Drive Current at Pin 9 (For Oscillator							
Design)	V _O = 0.4 V	5	0.16	0.35	-		
^I OL	= 0.5 V	10	0.42	0.8	-		
<u></u>	= 1.5 V	15	1	2	_	mA	
	V _O = <u>4.6 V</u>	5	-0.16	-0.35	_		
юн	= 9.5 V	10	-0.42	0.8			
	= 13.5 V	15	-1	-2	-		

Fig. 14 - Quiescent device current.

3

COMMERCIAL CMOS HIGH VOLTAGE ICs

RC oscillator applications are not recommended at supply voltages below 7 V for $R_X < 50 \ k\Omega_$

VSS

Fig. 16 - Input current,

9205-27402

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10^{-3} inch).

Chip dimensions and pad layout for CD4060B